-[3z^2+4z-(2z^2-7z)]+[(6z^2-[5z-z^2])+3z^2]=

Simple and best practice solution for -[3z^2+4z-(2z^2-7z)]+[(6z^2-[5z-z^2])+3z^2]= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -[3z^2+4z-(2z^2-7z)]+[(6z^2-[5z-z^2])+3z^2]= equation:


Simplifying
-1[3z2 + 4z + -1(2z2 + -7z)] + [(6z2 + -1[5z + -1z2]) + 3z2] = 0

Reorder the terms:
-1[3z2 + 4z + -1(-7z + 2z2)] + [(6z2 + -1[5z + -1z2]) + 3z2] = 0
-1[3z2 + 4z + (-7z * -1 + 2z2 * -1)] + [(6z2 + -1[5z + -1z2]) + 3z2] = 0
-1[3z2 + 4z + (7z + -2z2)] + [(6z2 + -1[5z + -1z2]) + 3z2] = 0

Reorder the terms:
-1[4z + 7z + 3z2 + -2z2] + [(6z2 + -1[5z + -1z2]) + 3z2] = 0

Combine like terms: 4z + 7z = 11z
-1[11z + 3z2 + -2z2] + [(6z2 + -1[5z + -1z2]) + 3z2] = 0

Combine like terms: 3z2 + -2z2 = 1z2
-1[11z + 1z2] + [(6z2 + -1[5z + -1z2]) + 3z2] = 0
[11z * -1 + 1z2 * -1] + [(6z2 + -1[5z + -1z2]) + 3z2] = 0
[-11z + -1z2] + [(6z2 + -1[5z + -1z2]) + 3z2] = 0
-11z + -1z2 + [(6z2 + [5z * -1 + -1z2 * -1]) + 3z2] = 0
-11z + -1z2 + [(6z2 + [-5z + 1z2]) + 3z2] = 0

Reorder the terms:
-11z + -1z2 + [(-5z + 6z2 + 1z2) + 3z2] = 0

Combine like terms: 6z2 + 1z2 = 7z2
-11z + -1z2 + [(-5z + 7z2) + 3z2] = 0

Remove parenthesis around (-5z + 7z2)
-11z + -1z2 + [-5z + 7z2 + 3z2] = 0

Combine like terms: 7z2 + 3z2 = 10z2
-11z + -1z2 + [-5z + 10z2] = 0

Remove brackets around [-5z + 10z2]
-11z + -1z2 + -5z + 10z2 = 0

Reorder the terms:
-11z + -5z + -1z2 + 10z2 = 0

Combine like terms: -11z + -5z = -16z
-16z + -1z2 + 10z2 = 0

Combine like terms: -1z2 + 10z2 = 9z2
-16z + 9z2 = 0

Solving
-16z + 9z2 = 0

Solving for variable 'z'.

Factor out the Greatest Common Factor (GCF), 'z'.
z(-16 + 9z) = 0

Subproblem 1

Set the factor 'z' equal to zero and attempt to solve: Simplifying z = 0 Solving z = 0 Move all terms containing z to the left, all other terms to the right. Simplifying z = 0

Subproblem 2

Set the factor '(-16 + 9z)' equal to zero and attempt to solve: Simplifying -16 + 9z = 0 Solving -16 + 9z = 0 Move all terms containing z to the left, all other terms to the right. Add '16' to each side of the equation. -16 + 16 + 9z = 0 + 16 Combine like terms: -16 + 16 = 0 0 + 9z = 0 + 16 9z = 0 + 16 Combine like terms: 0 + 16 = 16 9z = 16 Divide each side by '9'. z = 1.777777778 Simplifying z = 1.777777778

Solution

z = {0, 1.777777778}

See similar equations:

| X-(3x+5x)=41 | | 120=1+x+2+x+3+x | | 5x+1=3x+31 | | 4x-5y+5z=53 | | 5x-(3x+6)=8 | | 7-3x-2=5x+5-7x-3 | | 270-84x+6x^2=0 | | Y=0.005x+0.2 | | 22-3x=-20 | | 2x^2+9.5x-9.5=0 | | 2(-2+2x)+4=4x | | (-4m^2+7n^2-9n)-[(7m^2-9m+7n)+(-7m^2)+4n^2]= | | 2y-27-6y+33= | | h+7=-9 | | 2y+4=4x | | 2x+3y-z=23 | | 6y-5=8y-11 | | 6+.33(x-9)=.5(2-x) | | 4y=.78 | | 4y=3.6 | | 4y=4.015 | | 2+6h+60=90 | | 5a+5a=5 | | 5a+5whena=5 | | 4y=2.13 | | 6-2(x+7)=-4 | | 6h+60=90 | | 8x^3+-72x^2=0 | | 8(x-3)-(x-3)=7 | | x^4+2x^2y^2+y^4-x^3+3xy^2=0 | | 7p^2=2 | | -14.8+19.2= |

Equations solver categories